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Chapter 1

Introduction

1.1 Basic Concepts and Definitions

Differential Equations: The laws of the universe are written in the language of mathemat-
ics. Algebra is sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing quantities.
Because the derivative f

′

(t) of the function f is the rate at which the quantity f(t) is
changing with respect to the independent variable1 t, it is natural that equations involving
derivatives are frequently used to describe the changing universe. An equation relating an
unknown function and one or more of its derivatives is called a differential equation, (DE).

A DE is used to describe changing quantities and it plays a major role in qualitative
studies in many disciplines such as all areas of engineering, physical sciences, life sciences,
and economics.

The differential equation
dx

dt
= x2 + t2

involves both the unknown function x(t) and its first derivative x
′

(t) = dx
dt
.

The differential equation
d2y

dx2
+ 3

dy

dx
+ 7y = 0

involves the unknown function y of the independent variable x and the first two deriva-
tives dy

dx
and d2y

dx2 of y.

Examples:
Are they DEs or not?
ax2 + bx+ c = 0 No!
ax2 + bx

′

+ c = 0 Yes! Here x
′

= dx
dt

1When an equation involves one or more derivatives with respect to a particular variable,that variable

is called an independent variable. A variable is called dependent if a derivative of that variable is occurs.
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ax2 + bx
′

+ cy
′

= 0 Yes! Here x
′

= dx
dt

and y
′

= dy

dx

y
′′

= x3 Yes! Here y
′′

= d2y

dx2 .

Applications of Differential Equations:
As mentioned before, in real life there are a lot of applications of DEs such as e.g. New-
ton’s law of cooling, where the physical law can be translated into a differential equation.
Another examples are Torricelli’s law, heat transfer in materials, relaxation in nuclear
magnetic resonance, radioactive decay, and chemical reaction kinetics where the rate law
or rate equation for a chemical reaction is a DE that links the reaction rate with concen-
trations or pressures of reactants and constant parameters.

1.2 Classification of Differential Equation

There are some ways of classifying differential equations.

1. Order and Degree of DEs: The order of a DE is determined by the highest order
derivative of the dependent variable.

Examples: Determine the order of the following DEs:

ax+
dx

dt
= 0 ”first order DE”

dx

dt
+ ax2 = 0 ”first order DE”

d2x

dt2
+ bx = 0 ”second order DE”

bx4 +
d2x

dt2
= 0 ”second order DE”

d(n)x

dt(n)
+ cx = 0 ”n− th order DE”.

While the degree of a DE is determined by the power of the highest order derivative
present in the equation.
Examples:

(
d2x

dt2
)5 + b(

d3x

dt3
)2 = 0 ”second degree third order DE”

dx

dt
+ ax3 = 0 ”first degree first order DE”

(
d2x

dt2
)(n) + a

dx

dt
+ bx = 0 ”n− th degree second order DE”.
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2. Homogeneous and Nonhomogeneous DEs: A differential equation is nonhomoge-
neous if it has terms involving only the independent variable (and constants) on the
right hand side, and it is homogeneous if this right hand side is zero.
Examples: The differential equations

dy

dx
+ x2y = 4x3

d4y

dx4
+ x

d2y

dx2
+ y2 = 6x+ 3

are nonhomogeneous.
While the following differential equation

d4y

dx4
+ x

d2y

dx2
+ y2 = 0.

is homogeneous.

3. Linear and Nonlinear DEs: A crucial classification of differential equations is whether
they are linear or nonlinear. The differential equation is said to be linear if it is a
linear function in the dependent variable y and its derivatives, but not in x.

Examples: The differential equation

ex
d2y

dx2
+ (cosx)

dy

dx
+ (1−

√
x)y = tan−1x

is linear because the dependent variable y and its derivatives
dy

dx
and

d2y

dx2
appear

linearly. By contrast, the equations

d2y

dx2
= y

dy

dx

d2y

dx2
+ 3(

dy

dx
)2 + 4y3 = 0

are not linear because products and powers of y or its derivatives appear. Also,

d2y

dx2
+ 2(

dy

dx
)3 + y = 0 is nonlinear

x2 d
2y

dx2
+ x

dy

dx
+ x2y = 4x3 is linear

d2y

dx2
+

dy

dx
− 6y = 0 is linear.
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4. Ordinary and Partial Differential Equations: One of the more obvious classifications
is based on whether the unknown function depends on a single independent vari-
able or on several independent variables. In the first case, only ordinary derivatives
appear in the differential equation, and it is said to be an Ordinary Differential
Equation, (ODE). In the second case, the derivatives are partial derivatives, and
the equation is called a Partial Differential Equation (PDE).

Examples: All the above differential equations, which were discussed before, are
ODEs. Another example of ODE is

d2x(t)

dt2
+

dx(t)

dt
+ x(t) = 0 ”ODE”

While examples of PDEs are

∂2y(t, s)

∂s2
−

∂y(t, s)

∂t
= 0 ”PDE”

∂2y(t, s)

∂s2
−

∂2y(t, s)

∂t2
= 0 ”PDE”

In this course, only ODEs are considered.

1.3 Solutions of ODE

In algebra, we typically seek the unknown numbers that satisfy an equation such as
x3+7x2− 11x+41 = 0. By contrast, in solving a differential equation, we are challenged
to find the unknown function y = y(x) for which an identity such as

dy

dx
= 2xy

holds on some interval of real numbers. Ordinarily, we will want to find all solutions of
the differential equation, if possible.
Example:

ay
′

(x) + b = 0

y
′

= −
b

a
is not a solution

y = −

∫

b

a
dx is a solution.

Example: Show that y = e2x is a solution of the differential equation

d2y

dx2
+

dy

dx
− 6y = 0.
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Solution:

y = e2x =⇒
dy

dx
= 2 e2x =⇒

d2y

dx2
= 4 e2x;

then
d2y

dx2
+

dy

dx
− 6y = 4 e2x + 2 e2x − 6 e2x = 0.

There are some methods for finding the solution of the differential equations, these meth-
ods are discussed in the following next chapters.





Chapter 2

Methods of Finding the Solution of

the First Order Differential Equation

There are some methods of finding the solution of the first order ODE based on integration
as general and particular solutions.

2.1 Separation of Variables

The first order differential equation

dy

dx
= H(x, y). (2.1)

is called separable provided that H(x, y) can be written as the product of a function of x
and a function of y:

dy

dx
= M(x)

1

N(y)
, (2.2)

In this case the variables x and y can be separated (isolated on opposite sides of an
equation) by writing informally the equation

N(y) dy = M(x) dx. (2.3)

It is easy to solve this special type of differential equation simply by integrating the right
hand side with respect to x and the left hand side with respect to y as follows:

∫

y

N(y) dy =

∫

x

M(x) dx. (2.4)

which gives
H1(y) = H2(x) + c. (2.5)

where H1(y) and H2(x) are the antiderivatives of N(y) and M(x), respectively.
Eq.(2.5) is a general solution of eq.(2.1), meaning that it involves an arbitrary constant

7



8 2.1. Separation of Variables

c, and for every choice of c it is a solution of the differential equation in (2.1).

Example 1. Find the solution of
dy

dx
=

x2

1− y2
. (2.6)

Solution: The given eq. in (2.6) is separable. Rewrite it as

(1− y2) dy = x2 dx.

In order to solve the above equation, we have to integrate the left hand side with respect
to y while the right hand side with respect to x

∫

(1− y2) dy =

∫

x2 dx

y −
y3

3
=

x3

3
+ c

3y − y3 = x3 + 3c.

where c is an arbitrary constant.

Note: In eq.(2.1), if in addition to the differential equation, an initial condition

y(x0) = y0

is prescribed, then the solution of eq.(2.1) satisfying this condition is obtained by setting
x = x0 and y = y0 in eq.(2.5). This gives

H1(y0) = H2(x0) + c

then c = H1(y0)−H2(x0). Substitute in eq.(2.5) gives the particular solution of eq.(2.1).

Example 2. Solve the following initial value problem

dy

dx
=

3x2 + 4x+ 2

2(y − 1)
, y(0) = −1.

Solution: The differential equation can be written as

2(y − 1)dy = (3x2 + 4x+ 2)dx.

Integrate the left hand side with respect to y and the right hand side with respect to x
gives

∫

2(y − 1)dy =

∫

(3x2 + 4x+ 2)dx
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y2 − 2y = x3 + 2x2 + 2x+ c (2.7)

where c is an arbitrary constant.
In order to determine the value of c in eq.(2.7), we substitute the given initial condition
(y(0) = −1) in eq.(2.7), obtaining c = 3.
Hence, the particular solution of the initial value problem is

y2 − 2y = x3 + 2x2 + 2x+ 3.

Example 3. Solve the initial value problem

dy

dx
= −6xy, y(0) = 7.

Solution: Divide both sides of the DE by y and multiply each side by dx to get

dy

y
= −6x dx. (2.8)

Then integrate both sides
∫

dy

y
=

∫

(−6x) dx

ln y = −3x2 + c

y = e−3x2+c = e−3x2

ec (2.9)

let
ec = A

then eq.(2.9) is redefined as

y = Ae−3x2

(2.10)

substitute the initial condition (y(0) = 7) in eq.(2.10) yields A = 7.
So, the particular solution is

y = 7e−3x2

.

Example 4.
Find the solution of the initial value problem

dy

dx
=

y cosx

1 + 2y2
, y(0) = 1

Solution: Rewrite the DE as
1 + 2y2

y
dy = cosx dx, such that the resulting equation is

separable. Hence
∫

1 + 2y2

y
dy =

∫

cosx dx

ln y + y2 = sinx + c.

Substitute the given initial condition, gives c = 1. Hence, the solution of the DE is

ln y + y2 = sinx+ 1.
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Application in Reality

Cooling and Heating Equation:

Newton’s law of cooling may be stated in this way:
The time rate of change of the temperature T (t) of a body is proportional to the difference
between T and the temperature A of the surrounding medium. That is

dT

dt
= k(A− T ) (2.11)

where k is a positive constant. Observe that if T > A, then dT
dt

< 0, so the temperature
is a decreasing function of t and the body is cooling. But if T < A, then dT

dt
> 0, so that

T is increasing.
Thus the physical law is translated into a differential equation. If we are given the values
of k and A, we should be able to find an explicit formula for T (t), and then –with the aid
of this formula– we can predict the future temperature of the body.

Example 5.
A roast, initially at 50F, is placed in a 375F oven at 5:00 Pm. After 75 minutes it is found
that the temperature T (t) of the roast is 125F. When will the roast be 150F (medium
rare)?

Solution: We take t in minutes, with t = 0 corresponding to 5:00 pm.
We have T (t) < A = 375, T (0) = 50, and T (75) = 125. Hence

dT

dt
= k(375− T )

∫

dT

375− T
=

∫

k dt

−ln(375− T ) = kt+ c

375− T = Be−kt.

Now, T (0) = 50 implies that B = 325, so T (t) = 375 − 325e−kt. We also know that
T (75) = 125. Substitution of these values in the preceding equation yields

k = −
1

175
ln(

250

325
) ≈ 0.0035.

Hence we finally solve the equation

150 = 375− 325e(−0.0035)t

for t = −
ln(225/325)

0.0035
≈ 105 min, the total cooking time required. Because the roast was

placed in the oven at 5:00 pm, it should be removed at about 6:45 pm.
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Exercises:

A. Find the particular solution of

1. 2xy
dy

dx
= 1 + y2, y(2) = 3.

2. xy2dx+ exdy = 0, y(0) =
1

2
.

B. Find the general solution of the following

1. (1− x)
dy

dx
= y2.

2. sinx cosy dx+ cosx siny dy = 0.
3. ye2x dx = (4 + e2x) dy.
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2.2 Equations with Homogeneous Coefficients

Homogeneous functions: The function f(x, y) is said to be homogeneous of degree k in x
and y if, and only if,

f(λx, λy) = λkf(x, y).

The definition is easily extended to functions of more than two variables.

Examples:

1. f(x, y) = 2y3 exp(
y

x
)−

x4

x+ 3y

f(λx, λy) = 2λ3y3 exp(
λy

λx
)−

λ4x4

λx+ 3λy
= λ3f(x, y);

hence f(x, y) is homogeneous of degree 3 in x and y.

2. f(x, y) =
√
x+ 4y

f(λx, λy) =
√
λx+ 4λy = λ

1

2 f(x, y);

hence the function f(x, y) =
√
x+ 4y is homogeneous of degree

1

2
in x and y.

3. f(x, y) =
x

√

x2 + y2

f(λx, λy) =
λx

√

λ2x2 + λ2y2
= λ0f(x, y);

hence the function f(x, y) =
x

√

x2 + y2
is homogeneous of degree zero in x and y.

To solve equations with homogeneous coefficients, suppose the coefficients M and N in
an equation of order one,

M(x, y)dx+N(x, y)dy = 0 (2.12)

are both homogeneous functions and are of the same degree in x and y. The ratio
M

N
is

a function of
y

x
alone.

Hence eq.(2.12) may be put in the form

dy

dx
+ g(

y

x
) = 0 (2.13)

This suggest the introduction of a new variable v by putting y = vx and
dy

dx
= v dx+x dv.

Then (2.13) becomes

x
dv

dx
+ v + g(v) = 0, (2.14)

in which the variables are separable. We can obtain the solution of (2.14) by the separation
of variable method in the previous section. After finding the solution, we have to back to
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the original variables by inserting
y

x
for v, and thus arrive at the solution of (2.12).

We have shown that the substitution y = vx will transform eq.(2.12) into an equation in
v and x in which the variables are separable.
Note: The above method would also be successful if we used x = vy (instead of y = vx)
to obtain from (2.12) an equation in y and v (instead of an equation of x and v).

Example 1. Solve the equation

(x2 − xy + y2) dx− xy dy = 0. (2.15)

Solution: Since the coefficients in (2.15) are both homogeneous and of degree two in x
and y, let us put y = vx, dy = v dx+ x dv.
Then (2.15) becomes

( (x2 − x2v + x2v2) dx− x2v(v dx+ x dv) = 0, ) ∗
1

x2

(1− v + v2) dx− v(v dx+ x dv) = 0

(1− v) dx+ v2 dx− v2 dx− vx dv = 0.

( (1− v) dx− xv dv = 0. ) ∗
−1

x(v − 1)

Hence we separate variables to get

dx

x
+

v dv

v − 1
= 0

∫

x

dx

x
+

∫

v

(1 +
1

v − 1
)dv = 0

ln x+ v + ln(v − 1) = ln c

or
x(v − 1) ev = c.

In terms of the original variables, the solution is given by

x(
y

x
− 1) exp(

y

x
) = c

or
(y − x) exp(

y

x
) = c.

Example 2. Solve the equation

xy dx+ (x2 + y2) dy = 0 (2.16)

Solution: Again the coefficients in the equation are homogeneous and of degree two.
We could use y = vx, but the relation simplicity of the dx term in (2.16) suggests that
we put x = vy. Then dx = v dy + y dv, and equation (2.16) is replaced by

( vy2(v dy + y dv) + (v2y2 + y2) dy = 0, ) ∗
1

y2
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v(v dy + y dv) + (v2 + 1) dy = 0.

Hence we need to solve

( vy dv + (2v2 + 1) dy = 0, ) ∗
1

y(2v2 + 1)

we separate the variables such that
∫

v

2v2 + 1
dv +

∫

dy

y
= 0

ln(2v2 + 1) + 4 ln y = ln c

y4(2v2 + 1) = c.

Thus the desired solution is given by

y4(
2x2

y2
+ 1) = c;

that is
y2(2x2 + y2) = c.

Remark: It is quite immaterial whether one uses y = vx or x = vy. However, it is some-
times easier to substitute for the variable whose differential has the simpler coefficient.

Example 3. Check whether the following differential equation has homogeneous coeffi-
cients of the same degree or not; then find its solution.

y dx = (x+
√

y2 − x2) dy. (2.17)

Solution: The coefficients in the equation are homogeneous and of degree one.
Let

x = v y, dx = v dy + y dv. (2.18)

Put (2.18) in (2.17), yields

y (v dy + y dv) = (vy +
√

y2 − v2 y2) dy

yv dy + y2dv = (vy + y
√
1− v2) dy

yv dy + y2dv = vy dy + (y
√
1− v2) dy

y2dv = y
√
1− v2 dy

( y2dv = y
√
1− v2 dy ) ∗

1

y2
√
1− v2

dv
√
1− v2

=
dy

y

sin−1(v) = ln y + c.
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But v =
x

y
, so the solution is

sin−1(
x

y
) = ln y + c.

Exercises:

Find the solution of the following
1. (x− 2y) dx+ (2x+ y) dy = 0.

2. y dx = (x+
√

y2 − x2) dy

3. (y −
√

x2 + y2) dx− x dy = 0; y(
√
3) = 1.

4. (3x2 − 2y2) y
′

= 2xy; y(0) = −1.
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2.3 Linear First-Order Equation

Previously, we saw how to solve a separable differential equation by integrating after
multiplying both sides by an appropriate factor.
For instance, to solve the equation

dy

dx
= 2xy (2.19)

we multiply both sides by the factor
1

y
to get

1

y

dy

dx
= 2x;

that is
dy

y
= 2x dx. (2.20)

Because each side of the equation in (2.20) is recognizable as a derivative, all that re-
mains are two simple integrations, which yield ln y = x2+ c. For this reason, the function

µ(y) =
1

y
is called an integrating factor for the original equation in (2.19).

An integrating factor for a differential equation is a function µ(x, y) such that the multi-
plication of each side of the differential equation by µ(x, y) yields an equation in which
each side is recognizable as a derivative.
With the aid of the appropriate integrating factor, there is a standard technique for solving
the linear first-order equation

dy

dx
+ p(x)y = Q(x), (2.21)

On an interval on which the coefficient functions p(x) and Q(x) are continuous. We
multiply each side in eq.(2.21) by the integrating factor

µ(x) = e
∫
p(x) dx. (2.22)

The result is

e
∫
p(x) dx dy

dx
+ p(x) e

∫
p(x) dx y = Q(x) e

∫
p(x) dx. (2.23)

Because
d

dx

(

∫

p(x) dx
)

= p(x),

the left-hand side is the derivative of the product y(x) e
∫
p(x) dx, so eq.(2.23) is equivalent

to
d

dx

(

y(x) e
∫
p(x) dx

)

= Q(x) e
∫
p(x) dx ;

d
(

y(x) e
∫
p(x) dx

)

=
(

Q(x) e
∫
p(x) dx

)

dx.

Integration of both sides of this equation gives

y(x) e
∫
p(x) dx =

∫
(

Q(x)e
∫
p(x)) dx

)

dx+ c.
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Finally, solving for y,we obtain the general solution of the linear first-order equation in
(2.21):

y(x) = e−
∫
p(x) dx

(

∫

(Q(x)e
∫
p(x)) dx)dx+ c

)

. (2.24)

That is, in order to solve an equation that can be written in the form in eq.(2.21) with
the coefficient functions p(x) and Q(x) displayed explicitly, you should attempt to carry
out the following steps.
Method : Solution of First-order equations

1. Begin by calculating the integrating factor µ(x) = e
∫
p(x) dx.

2. Then multiply both sides of the differential equation by µ(x).

3. Next, recognize the left-hand side of the resulting equation as the derivative of a
product:

d

dx

(

µ(x) y(x)

)

= µ(x) Q(x).

4. Finally, integrate this equation,

µ(x) y(x) =

∫

µ(x) Q(x) dx+ c,

then solve for y to obtain the general solution of the original differential equation.

Remark: Given an initial y(x0) = y0, you can (as usual) substitute x = x0 and y = y0
into the general solution and solve for the value of c yielding the particular solution that
satisfies this initial condition, where c is a unique value.
Consequently, we have shown the following existence-uniqueness theorem.

Theorem 2.1 If the functions p(x) and Q(x) are continuous on an open interval con-
taining the point x0, then the initial value problem

dy

dx
+ p(x) y = Q(x), y(x0) = y0 (2.25)

has a unique solution y(x) on the interval, given by the formula in eq.(2.24) with an
appropriate value of c.

Example 1. Solve the initial value problem

dy

dx
− y =

11

8
e

−x

3 , y(0) = −1. (2.26)

solution: Here we have p(x) = −1 and Q(x) =
11

8
e−x

3
, so the integrating factor is

µ(x) = e
∫
(−1) dx = e−x.

Multiplication of both sides of the given equation (2.26) by e−x yields

e−x dy

dx
− e−x y =

11

8
e

−4x

3 , (2.27)
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which we recognize as
d

dx

(

e−x y
)

=
11

8
e

−4x

3 .

Hence integration with respect to x gives

e−x y =

∫

11

8
e

−4x

3 dx =
−33

32
e

−4x

3 + c,

and multiplication by ex gives the general solution

y(x) = cex −
33

32
e

−x

3 .

Substitution of x = 0 and y = −1 now gives c =
1

32
, so the desired particular solution is

y(x) =
1

32
ex −

33

32
e

−x

3 =
1

32

(

ex − 33 e
−x

3

)

.

Example 2. Find a general solution of

(x2 + 1)
dy

dx
+ 3xy = 6x. (2.28)

Solution: After division of both sides of the equation by x2 + 1, we recognize the result

dy

dx
+

3x

x2 + 1
y =

6x

x2 + 1

as a first-order linear equation with p(x) =
3x

x2 + 1
and Q(x) =

6x

x2 + 1
. Multiplication by

µ(x) = exp

(
∫

3x

x2 + 1
dx

)

= exp

(

3

2
ln(x2 + 1)

)

= (x2 + 1)
3

2

yields

(x2 + 1)
3

2

dy

dx
+ 3x (x2 + 1)

1

2 y = 6x (x2 + 1)
1

2 ,

and thus
d

dx

(

(x2 + 1)
3

2 y
)

= 6x (x2 + 1)
1

2 .

Integration then yields

(x2 + 1)
3

2 y =

∫

6x (x2 + 1)
1

2 dx = 2(x2 + 1)
3

2 + c.

Multiplication of both sides by (x2 + 1)
−3

2 gives the general solution

y(x) = 2 + c (x2 + 1)
−3

2 .
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Example 3. Find the general solution of

y
′

= 1 + x+ y + x y.

Solution:
dy

dx
= 1 + x+ y + x y

dy

dx
− (1 + x) y = 1 + x, (2.29)

which is a linear first-order equation with

p(x) = −(1 + x), Q(x) = 1 + x.

Multiply (2.29) by µ(x) = e
∫
−(1+x) dx = e−(x+x

2

2
), yields

e−(x+x
2

2
) dy

dx
− e−(x+x

2

2
) (1 + x) y = e−(x+x

2

2
) (1 + x)

and thus
d

dx
(e−(x+x

2

2
) y) = e−(x+x

2

2
) (1 + x).

Integration then gives

y e−(x+x
2

2
) =

∫

((1 + x) e−(x+x
2

2
)) dx.

y = −1 + e(x+
x
2

2
) c.

Mixture Problems: As an application of linear first-order equations, we consider a
tank containing a solution (a mixture of solute and solvent) such as salt dissolved in wa-
ter. There is both inflow and outflow, and we want to compute the amount x(t) of solute
in the tank at time t, given the amount x(0) = x0 at time t = 0. Suppose that solution
with a concentration of ci grams of solute per liter of solution flows into the tank at the
constant rate of ri liters per second, and that the solution in the tank (kept thoroughly
mixed by stirring) flows out at the constant rate of ro liters per second.
To set up a differential equation for x(t), we estimate the change ∆x in x during the brief
time interval [t, t+∆t]. The amount of solute that flows into the tank during ∆t seconds
is rici∆t grams.
The amount of solute that flows out of the tank during the same time interval depends
on the concentration co(t) of solute in the solution at time t. But as noted in Fig. 2.1,

co(t) =
x(t)

v(t)
, where v(t) denotes the volume (not constant unless ri = ro) of solution in

the tank at time t.
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Figure 2.1: The single-tank mixture problem

Then
∆x = grams input− grams output ≈ rici∆t− roco∆t.

We now divide by ∆t:
∆x

∆t
≈ rici − roco.

Finally, we take the limit as ∆t → 0; if all the functions involved are continuous and x(t)
is differentiable, then the error in this approximation also approaches zero, and we obtain
the differential equation

dx

dt
= rici − roco, (2.30)

in which ri, ci and ro are constants, but co denotes the variable concentration

co(t) =
x(t)

v(t)
(2.31)

of solute in the tank at time t. Thus the amount x(t) of solute in the tank satisfies the
differential equation

dx

dt
= rici −

ro
v
x, (2.32)

which is a linear first-order differential equation for the amount x(t) of solute in the tank
at time t.

Example 4. Assume that Lake Erie has a volume of 480 km3 and that its rate of inflow
(from Lake Huron) and outflow (to Lake Ontario) are both 350 km3 per year. Suppose
that at the time t = 0 (years), the pollutant concentration of Lake Erie (caused by past
industrial pollution that has now been ordered to cease) is five times that of Lake Huron.
If the outflow, henceforth is perfectly mixed lake water, how long will it take to reduce
the pollution concentration in Lake Erie to twice that of Lake Huron?

Solution: Here we have

v = 480 (km3),
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ri = ro = r = 350 (
km3

yr
),

ci = c (the pollutant concentration of Lake Huron)

and x0 = x(0) = 5 cv,

and the question is this: When is x(t) = 2 cV ? with this notation, eq.(2.32) is the
equation

dx

dt
= rc−

r

v
x,

which we rewrite in the linear first-order form

dx

dt
+

r

v
x = rc (2.33)

with constant coefficients p =
r

v
, q = rc, and integrating factor µ = e

(
r

v
) t

.

Then the solution of equation (2.33) is

x(t) = e−( r
v
) t
(

∫

e(
r

v
) t rc dt

)

x(t) = e−( r
v
) t
(

e(
r

v
) t cv + c̄

)

x(t) = cv + e−( r
v
) t c̄. (2.34)

Substitute the initial condition x(0) = 5 cv, gives

5 cv = cv + c̄ =⇒ c̄ = 4 cv.

Substitute the value of c̄ in (2.34), yields

x(t) = cv + 4 cv e−( r
v
) t.

To find when x(t) = 2 cv, we therefore need only solve the equation

cv + 4 cv e−( r
v
) t = 2 cv for t.

=⇒ t =
v

r
ln4 =

480

350
ln4 ≈ 1.901years.
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Example 5. A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of
water. Brine containing 2 lb/gal of salt flows into the tank at the rate of 4 gal/min, and
the well-stirred mixture flows out of the tank at the rate of 3 gal/min. How much salt
does the tank contain when it is full?

Solution: The interesting feature of this example is that due to the differing rates of
inflow and outflow, the volume of brine in the tank increases steadily with v(t) = 90 + t
gallons. The change ∆x in the amount x of salt in the tank from time t to time t + ∆t
(minutes) is given by

∆x ≈ (4)(2)∆t− 3(
x

90 + t
)∆t,

so our differential equation is
dx

dt
+

3

90 + t
x = 8.

An integrating factor is

µ(x) = exp
(

∫

3

90 + t
dt
)

= e3 ln(90+t) = (90 + t)3,

which gives
d

dt

(

(90 + t)3x
)

= 8(90 + t)3;

(90 + t)3x = 2(90 + t)4 + c.

Substitution of x(0) = 90 gives c = −(90)4, so the amount of salt in the tank at time t is

x(t) = 2(90 + t)−
904

(90 + t)3
.

The tank is full after 30 min, and when t = 30, we have

x(30) = 2(90 + 30)−
904

1203
≈ 202 (lb)

of salt in the tank.
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